

Performance of Containerized Database Management Systems

Kim-Thomas Rehmann, Enno Folkerts, SAP SE 7th International Workshop on Testing Database Systems (DBTEST)

Agenda

OS containers and databases

Comparing container configurations

Container resources

Operations

Evaluation

Containers are the new VMs

Virtualization at OS-kernel level instead of hardware level

- More lightweight because of higher abstraction level
- Software deployed as container image, which includes the userland OS
 - Several layers, the top layer is mutable but volatile
 - Persistent storage must be mapped into the container
- Largely independent of hardware → kernel API and resource assignments are relevant
 - Partitioning or virtualization, to colocate containers
 - Isolation of collocated containers is possible but hard to achieve
- Container orchestration (application execution e.g. by Kubernetes)
 - → cross-OS compatibility

© 2018 SAP SE or an SAP affiliate company. All rights reserved. I CONFIDENTIAL

Comparing container configurations

Container-based deployment of software in the cloud

laaS and container orchestration have various configuration options

• E.g. CPU allocation, storage class and QoS, network

How to compare these options?

Contribution

- Testing methodology to compare performance of different configurations under a wide range of workload
- Exemplified with Docker container engine and SAP HANA DB

Container resources

CPU

- Two options to assign hardware threads, dynamically changable
 - By total number (cpus)
 - By selection of threads (cpusets)

Volatile memory

- Overprovisioning not allowed to avoid OoM hazard
- Should take NUMA into account

Persistency

Persistent filesystem must be mapped from outside

Network

Operations: persistency striping for log volume

Shared volumes

Parallel accesses allow for increased performance

Low fragmentation

Dedicated volumes

Physical separation of data

Lower performance with reduced number of stripes

Higher storage consumption and fragmentation

Operations: CPU elasticity

cpus: shared sockets

Easy to overprovision

No control over NUMA placement

cpusets: pinned sockets

Partitioning, no simple overprovisioning

Supports NUMA-aware database

Operations: container migration

Hardware issues, maintenance, changing resource demand → container to move to different host

VMs usually support live migration, but container live-migration is not generally supported

Database can be transferred with near-zero downtime using system replication

Steps: add secondary, replicate data, takeover, remove secondary (former primary)

If system replication is too expensive, external persistency needs to be switched

Depending on storage configuration

- Dedicated volumes can be re-mounted on target host
- Shared volumes need to be copied

Performance testing methodology

Aim

- Simple comparison of container configuration options
- Based on diverse workload
- In isolation as well as in presence of noisy neighbors

Test suite

- Approx. 700 measurement points reporting either CPU time, elapsed time or cycle time
- OLTP: 5 queries on 1 or two tables with 100 clients
- OLAP: 4 queries on up to 38 tables
- 95% of measurement points have a coefficient of variation less than 5%

How to get an overview of the comparison of 700 measurement points µ?

```
min(μ):= min(avg(μ,A), avg(μ,B))

delta(μ):= avg(□,B) – avg(μ,A)

regression(μ):= 100 * delta(μ) / min(μ)
```

Procedure

- Create bins of regression values
- Display the bins as histogram, together with mean and percentiles
- Skew shows if and how much the configurations differ

Evaluation: baremetal baseline and VMs with noisy neighbor

VMs without/with noisy neighbor

Evaluation: CPU assignment (impact of noisy neighbor)

Evaluation: CPU assignment (cpuset vs. cpus)

with noisy neighbor

Evaluation: storage striping (dedicated storage vs. shared storage)

Thank you.

Contact information:

Kim-Thomas Rehmann, SAP SE Senior Developer

Dietmar-Hopp-Allee 16, 69190 Walldorf

+49 6227 749096

Kim-Thomas.Rehmann@sap.com

