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Vectorization using SIMD

Single Instruction Multiple Data (SIMD) Heavily used in Database Systems

= same instruction on multiple data elements = toincrease (single-thread) performance
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Trend of Increasing Vector Register Sizes
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INTEL SIMD Development

m—) SSE (128 bit) (NI 4 INVOTATRIN 8 = 16 —-—)
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Data Compression

Technique = abstract idea of how compression works

Run Length Encoding| | Differential Coding Frame-of-Reference Dictionary Coding Null Suppression
Replace run by Replace data elem. Replace data elem. Replace data elem. Eliminate
value &length by difference to by difference to by 0-based key leading zeroes in

predecessor reference value in dictionary binary representation

Logical Level Physical
natural numbers data bits and bytes
preprocessing role actual compression
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Run Length Encoding| | Differential Coding Frame-of-Reference Dictionary Coding Null Suppression
Replace run by Replace data elem. Replace data elem. Replace data elem. Eliminate
value &length by difference to by difference to by 0-based key leading zeroes in

predecessor reference value in dictionary binary representation

Logical Level Physical
natural numbers data bits and bytes
preprocessing role actual compression

Algorithm = concrete combination of one or more of these techniques

Two algorithms for the same technique might differin, e.g.
» their data layout
* their use of vectorization using SIMD instruction set extensions
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Vectorization and Compression

—) SSE (128 bit) m—) AVX(2) (256 bit) LM AVX-512 (512 bit) g

Literature on ) / /

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE (hopefully speedup of 2 respectively 4 compared to 128-bit)

| How to employ recent SIMD extensions for lightw eight data compression? I

straightforward port
» = Substitute SSE instructions for their AVX(2) and »
AVX-512 counterparts

= Slightly adapt memory layout where necessary
SSE-implementation

) : . AVX-implementation
of some algorithm Easy to do (it possible) AVX-512-implementation




Evaluation - First Example




SIMD-BP128* - Basic Idea

Null Suppression Algorithm
= very efficient from a performance as wellas compression ratio perspective

Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack alldata elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T ]

4]

3] Bl [T o]

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

8]

[T [7] T[&T 5l

4]

3]

o]

Processing

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [ T3] ol [E] o

. T J
Processing l_m m_load_si128()
[ [T B B[]

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [ T3] ol [E] o

N J\. J

AN 1

Processing _mm_load_si128() l_mm_load_si1280
Bl B B [o
[ [ZT B Bl [4]

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [ T3] ol [E] o

N J\. J

AN 1

Processing _mm_load_si128() l_mm_load_si1280
Bl B B [o
[ [ZT B Bl [4]
{ _mm_slli_epi32()
(7] THeN [ B T [af |

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [ T3] ol [E] o

N A J\. J

Processing _mm_load_si128() _mm_load_si128() l_mm_load_si1280
| [7iis| 6N 2] [SPN [4flo) [3] Bl Ta] o]
[ el AT H sl [ T71 Tl 5] 4]
{ _mm_slli_epi32()
[ Tz] THeN [ B T T |

‘_mm_or_si128()
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

[ TeT TS B [s] [71 o7 5] 4]  [3] Il [l o]
N \( A \C N Y J
Processing _mm_load_si128() _mm_load_si128() l_m m_load_si128()

| [70fs] Fe o] S [4lfo]

[ Te] TAT H sl
$ _mm_slli_epi32()
E [A] b 8] |

ol Ta]
[T Te] ]

{ _mm_slli_epi32()
B |

[T7] THe |

‘_mm_or_si128()

3] o]

4]

4] |

| [71[s] BV |

4]l0]

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

STl B B [T 7] BN B [3] B OB ol
J

N A J\.

A AN 1

Processing _mm_load_si128() l_mm_load_si1280
3] Rl [E] o
[ 77 [ed B 4]

$ _mm_slli_epi32()

Bl A H [s] ]

l_mm_or_si128()

Bll7 (s [AFeT o [

{ _mm_slli_epi32()

(717 THeN T B T 4 |

‘_mm_or_si128()

| [71[s] Fe 2] [N [4]

Compressed output (10 bits/int)
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

STl B B [T 7] BN B [3] B OB ol
J

N A J\.

A AN 1

Processing _mm_load_si128() l_mm_load_si1280
3] Rl [E] o
[ 77 [ed B 4]

$ _mm_slli_epi32()

Bl A H [s] ]

l_mm_or_si128() ‘_mm_or_si128()

Bll7 (s [AFeT o [ | [71[s] Fe 2] [N [4]

{ _mm_slli_epi32()

(717 THeN T B T 4 |

_mm_store_si128()

r

N
Compressed output (10 bits/int) ... [B][7][3] 28 | | [4]]
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SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

[_Tel A B TeT [+ T&T Bl [ T3] ol [E] o

N A J\. J

AN 1

Trivially Portable

_mm_load_si128() _mm_load_si128() l_mm_load_silzs()

All employed SSE-intrinsics

have equivalents [3] B [o]
in AVX2 and AVX-512,eg.
_mm_load_si128() | 171 - l 4]
_mm256_load_si256() { _mm_slli_epi32() { _mm_slli_epi32()
-mm>512_load_si5120 EI . . (T2l T8l | B T Jar ]

_mm_slli_epi32() l_mm_or_si128() ‘_mm_or_si128()
_mm256_slli_epi32()

P! Bl 73 [Al'6] 28 5|8 [4][0] [ [7[[s] [T B[ BT [lfo]
_mmb512_slli_epi32()

_mm_or_sil128() _mm_store_si128()
_mm256_or_si256()

_mm512_or_si512() r

N\
Compressed output (10 bitsfint) ... [B][7][3] | |28 [5] 18] [4][0]
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SIMD-BP128* - Idea

block size = size of vector register in bits

- guarantees alignment of output \

v

Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack all data elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.
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SIMD-BP128* - Idea

_—"> Ported versions need blocks of
- 256 elements (AVX2)
- 512 elements (AVX-512)

block size = size of vector register in bits
- guarantees alignment of output \

Z
Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack all data elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.




Evaluation Setup

Algorithms

= Implemented in C/C++
- Some by the originalauthors
- Some implemented by us
= Compiled using g++-7.0.1 -0O3

Synthetic Data
= Allows to vary the data properties carefully

Evaluation System

= Intel Xeon Phi7250
- 1.4 GHz
- Ll-cache:32 KB (data)
- L2-cache:1 MB

 6x32 GB DDR4 @ 2400 MHz

Measurements
= Allexperiments completely in-memory

= disk not touched during time measurements

= Compression ratio reported in bits/int
- Loweris better
- Uncompressed data has 32 bits/int

= Speeds reported in million integers per
second (mis)

- Higheris better
- Onlysingle-thread performance
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SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers

= Unsorted
= 4-bit values vs. 28-bit outliers

= We vary the outlier ratio
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SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers
= Unsorted
= 4-bit values vs. 28-bit outliers
= We vary the outlier ratio

Insights

= Increasing vector size
- increasing vulnerability to
outliers

few outliers

many outliers

twice as much memory
compared to 128-bit
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SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers
= Unsorted
= 4-bit values vs. 28-bit outliers
= We vary the outlier ratio

Insights

= Increasing vector size
- increasing vulnerability to
outliers
= Suboptimalspeed ups

- Faraway from speedups of
2o0r4

few outliers

many outliers
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Evaluation Second Example




Run-Length Encoding

Basic ldea
= View subsequent occurrences of the same uncompressed
value as a run Rle
= Each run representable by its value and length 00/98]76/54
— just two integers 0098|7654 00/98|76|54| run value
0098|7654 00 00[{00[{04 runlength
0098|7654 12/34|56|78] run value
RLE-SIMD 12[34|56]78 00/00[00[01 runlength
= Uses SIMD instructions to parallelize comparisons |[00|00|AB|CD 00/00|AB|CD| run value
= Proposed for 128-bit vectorization 00(00|AB|CD 00/00/00/03 run length
00/00|/ABICD
Porting to Larger Vector Sizes
= easily portable using a straightforward approach
........ Read this
...... way
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Evaluation using Different Vector Sizes

Compression Speed Speedup
= Measured in million integers per second (mis) = Compared to baseline of 128-bit

non-well performing area well-performing area
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Evaluation using Different Vector Sizes

Conflict Detection-based Run-Length Encoding —
AVX-512 CD Instruction Set in Action e of 128-bit

Annett Ungethiim, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

Database Systems Group, Technische Universitéit Dresden

Dresden, Germany
{firstname.lastname}@tu-dresden.de

non-wellperforming area well-performing area
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Conclusion

—) —) AVX(2) (256 bit) —) w m—)
Literature on

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE

Advantage Disadvantages
Desired speedups usually not achieved

- Straightforward porting usually feasible . Negative effect on compression ratio

Straightforward Port

L5 » o
SSE-implementation AVX-implementation
of some algorithm NOT THERIGHT WAY AVX-512-implementation
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