
15 June 2018

Adding Velocity to BigBench
[Work-in-Progress]

Todor Ivanov
(todor@dbis.cs.uni-frankfurt.de),

Patrick Bedué, Roberto V. Zicari
Frankfurt Big Data Lab,

Goethe University Frankfurt,
Germany

Ahmad Ghazal
Futurewei Technologies Inc.

Santa Clara, CA, USA

15 June 2018

Content

1. Background BigBench

2. Motivation

3. Streaming Extension

4. Proof of Concept

5. Conclusions & Next Steps

2

15 June 2018

BigBench [Ghazal et al. 2013] (presented @SIGMOD 2013)

● End-to-end, technology agnostic, application-level Big Data benchmark.
○ On top of TPC-DS (decision support on retail business)

○ Adding semi-structured and unstructured data.
○ Focus on: Parallel DBMS and MR engines (Hadoop, etc.).
○ Workload: 30 queries

■ Based on big data retail analytics research
■ 11 queries from TPC-DS

● Adopted by TPC as TPCx-BB (http://www.tpc.org/tpcx-bb/). Implementation in HiveQL
and Spark MLlib.

3

http://www.tpc.org/tpcx-bb/

15 June 2018

BigBench V2 [Ghazal et al. 2017] (presented @ ICDE 2017)
● BigBench V2 - a major rework of BigBench

○ Separate from TPC-DS and takes care of late binding.
● New simplified data model and late binding requirements.

○ Custom made scale factor-based data generator for all components.

● Workload:
○ All 11 TPC-DS queries are replaced with new queries in BigBench V2.
○ New queries with similar business questions - focus on analytics on the

semi-structured web-logs.

4

● 1 – many relationship :
● Semi-structured : key-value WebLog
● Un-structured: Product Reviews

15 June 2018

Motivation

● Growing number of industry scenarios requiring streaming and new streaming engines:

● New functionalities combining analytical with streaming features
○ Spark Structured Streaming
○ Calcite adapted by Flink SQL, Samza SQL, Drill, etc.
○ Kafka Streaming SQL - KSQL

● Need of standardized end-to-end application benchmarks covering all Big Data characteristics
including velocity:

○ micro-benchmarks: StreamBench, HiBench, SparkBench
○ application benchmarks: Linear Road, AIM Benchmark, Yahoo Streaming Benchmark,

RIoTBench

→ none of the above benchmarks integrates an end-to-end real-world scenario
implementing a Big Data architecture integrating storage, batch and stream processing
components

5

15 June 2018

Our Requirements

● Create configurable data stream to simulate multiple scenarios:
○ real-time monitoring and dashboards (refresh rate in less than 3 seconds)
○ streaming hours of history data for batch processing

● Create deterministic data stream to:
○ compare accurately systems under test
○ validate and verify the workload results

● Isolate the stream engine execution as much as possible to avoid any external
influence/bottlenecks, for example by the stream generation.

● Preserve the current BigBench specification, architecture, workload execution and metric.

6

15 June 2018

Streaming Methodology (I)

● Web-logs are key-value pairs representing user clicks (JSON file), for example:

● Web-sales example:

● Web-logs and web-sales are generated in
session window manner.

● Sort the entries according to the event timestamp
and create data windows depending on the simulated
scenario.

7

15 June 2018

Streaming Methodology (II)

● Support for two window types:

● Configurable window parameters:
○ window size (x)
○ window slide (y) (e.g., hourly windows, starting every 30 minutes)
○ total runtime

8

Fixed Window Sliding (Hopping) Window (x = 2*y)

15 June 2018

Design Overview

● Adding 3 new components:
○ Stream Generator
○ Fast-access Layer
○ Stream Processing

● Support for 2 stream execution modes:
○ Active Mode - simulate real-time data streaming (in second ranges)
○ Passive Mode - simulate data ingestion and transformation on micro-batch

processing (in hour ranges)
9

15 June 2018

Active and Passive Streaming Modes
● Active mode: parallel execution of the data stream generation and the actual stream

processing.

● Passive mode: sequential execution of data stream generation and the actual stream
processing.

10

15 June 2018

Workloads

● The streaming workload consists of five queries executed periodically on a stream
of data (web-logs and web-sales), covering simple aggregation and pattern
detection operations:

○ QS1: Find the 10 most browsed products in the last 120 seconds.

○ QS2: Find the 5 most browsed products that are not purchased across all users (or specific
user) in the last 120 seconds.

○ QS3: Find the top ten pages visited by all users (or specific user) in the last 120 seconds.

○ QS4: Show the number of unique visitors in the last 120 seconds.

○ QS5: Show the sold products (of a certain type or category) in the last 120 seconds.

11

15 June 2018

Metrics & Result Validation

● Execution time is the time between start and end of the query execution against the
streaming data.

● End-to-end streaming execution time (Latency) - starting from the Stream Generator and
stopping at the point where the data result is produced.

● Result validation based on scale factor similar to current BigBench validation (SF1):
1. Store persistently the results of every query execution over a streaming window.
2. Compare the results against the golden result once the benchmark run is finished.

12

15 June 2018

Proof of Concept Implementation

Passive Mode Components:
● Stream Generator in Spark
● Persistent Storage Layer in HDFS
● Fast-access Layer as In-memory Buffer
● Stream Processing in Spark Streaming

13

Active Mode Components:
● Stream Generator in Spark
● Persistent Storage Layer in HDFS
● Fast-access Layer in Kafka
● Stream Processing in Spark

Streaming

15 June 2018

Conclusion
● We present a stream processing extension of the BigBench benchmark.

● Our approach proposes configurable active and passive streaming modes in order to
cover the different streaming requirements (ranging from seconds to hours).

● It supports fixed and sliding window streaming to better address the common data
streaming use cases.

14

15 June 2018

Next Steps

● New implementation on Spark Structured Streaming replacing Spark Streaming.

● Adding other engines such as Flink and Samza.

● Extending the coverage of the stream SQL operators (new workloads) including
clustering, pattern detection and machine learning.

● Support for:
○ sliding windows in active mode
○ out-of-order record processing within and outside of a window
○ parallel query execution

● Validation experiments on a large-scale cluster with different active and passive mode
architectures.

15

15 June 2018

Acknowledgments. This work has been partially funded by the European Commission H2020
project DataBench - Evidence Based Big Data Benchmarking to Improve Business Performance,
under project No. 780966. This work expresses the opinions of the authors and not necessarily
those of the European Commission. The European Commission is not liable for any use that may
be made of the information contained in this work. The authors thank all the participants in the
project for discussions and common work.

www.databench.eu

Thank you for your attention!

http://www.databench.eu/

15 June 2018

References

[Ghazal et al. 2013] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess,
Alain Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards An Industry Standard
Benchmark for Big Data Analytics. In SIGMOD 2013. 1197–1208.

[Ghazal et al. 2017] Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan
Voong, Mohammed Al-Kateb, Waleed Ghazal, and Roberto V. Zicari. 2017. BigBench V2:
The New and Improved BigBench. In ICDE 2017, San Diego, CA, USA, April 19-22.

17

15 June 2018

Backup Slides

15 June 2018

QS1 (HiveQL Q5 in BigBench V2)

Find the 10 most browsed products in the last 120 seconds.

19

15 June 2018

QS2 (HiveQL Q6 in BigBench V2)

Find the 5 most browsed products that are not purchased across all users (or specific user) in
the last 120 seconds.

SELECT wl_item_id AS br_id, COUNT(wl_item_id) AS br_count
FROM web_logs
WHERE wl_item_id IS NOT NULL
GROUP BY wl_item_id;
view_browsed.createOrReplaceTempView("browsed");

SELECT ws_product_id AS pu_id
FROM web_logs
WHERE ws_product_id IS NOT NULL
GROUP BY ws_product_id;
view_purchased.createOrReplaceTempView("purchased");

SELECT br_id, COUNT(br_id)
FROM browsed LEFT JOIN purchased ON browsed.br_id = purchased.pu_id
WHERE purchased.pu_id IS NULL
GROUP BY browsed.br_id LIMIT 5;

20

15 June 2018

QS3 (HiveQL Q16 in BigBench V2)

Find the top ten pages visited by all users (or specific user) in the last
120 seconds.

SELECT wl_webpage_name, COUNT(wl_webpage_name) AS cnt
FROM web_logs
WHERE wl_webpage_name IS NOT NULL
GROUP BY wl_webpage_name
ORDER BY cnt DESC LIMIT 10;

21

15 June 2018

QS4 (HiveQL Q22 in BigBench V2)

Show the number of unique visitors in the last 120 seconds.

22

15 June 2018

QS5 HiveQL

Show the sold products (of a certain type or category) in the last 120
seconds.

23

