TECHNISCHE
@ UNIVERSITAT
DRESDEN

Make Larger Vector Register Sizes New Challenges?

Lessons Learned from the Area of Vectorized Lightweight Compression Algorithms

Dirk Habich, Patrick Damme, Annett Ungethim, Wolfgang Lehner

DBTest Workshop,2018-06-15

Vectorization using SIMD

Single Instruction Multiple Data (SIMD) Heavily used in Database Systems

= same instruction on multiple data elements = toincrease (single-thread) performance
simultaneously
Rethinking SIMD Vectorization for In-Memory Databases
Instruction stream Parallel data Orestis Polychroniou- Arun Raghavan Kenneth A. Ross'
Columbia University Oracle Labs | Columbia University

— Boosting Data Filtering on Columnar Encoding with SIMD

Hao Jiang Aaron J. Elmore
The University of ©hicamn Tha Maisavaiber af Chisama

hajiang@cs.uchic Make the Most out of Your SIMD Investments: Counter
Control Flow Divergence in Compiled Query Pipelines

Harald Lang Andreas Kipf Linnea Passing
Technical University of Munich Technical University of Munich Technical University of Munich
Munich, Germany Munich, Germany Munich, Germany
harald. lang@in tum.de andreas kipfi@in tum.de linnea passing@in tum.de
Peter Boncz Thomas Neumann Alfons Kemper
Centrum Wiskunde & Informatica Technical University of Munich Technical University of Munich
Amsterdam, The Netherlands Munich, Germany Munich, Germany
Results bonczi@cewi.nl thomas. intum.de alfons kemper@in.tum.de

Trend of Increasing Vector Register Sizes

Single Instruction Multiple Data (SIMD) Heavily used in Database Systems

= same instruction on multiple data elements = toincrease (single-thread) performance
simultaneously
Rethinking SIMD Vectorization for In-Memory Databases
Instruction stream Parallel data Orestis Polychroniou- Arun Raghavan Kenneth A. Ross'
Columbia University Oracle Labs | Columbia University

— Boosting Data Filtering on Columnar Encoding with SIMD

Hao Jiang Aaron J. Elmore
The University of ©hicamn Tha Maisavaiber af Chisama

hajiang@cs.uchic Make the Most out of Your SIMD Investments: Counter
Control Flow Divergence in Compiled Query Pipelines

Harald Lang Andreas Kipf Linnea Passing
Technical University of Munich Technical University of Munich Technical University of Munich
Munich, Germany Munich, Germany Munich, Germany
harald. lang@in tum.de andreas kipfi@in tum.de linnea passing@in tum.de
Peter Boncz Thomas Neumann Alfons Kemper
Centrum Wiskunde & Informatica Technical University of Munich Technical University of Munich
Amsterdam, The Netherlands Munich, Germany Munich, Germany
Results bonczi@cewi.nl thomas. in.tum de alfons kemper@in.tum.de

INTEL SIMD Development

m—) SSE (128 bit) (NI 4 INVOTATRIN 8 = 16 —-—)

3

Data Compression

Technique = abstract idea of how compression works

Run Length Encoding| | Differential Coding Frame-of-Reference Dictionary Coding Null Suppression
Replace run by Replace data elem. Replace data elem. Replace data elem. Eliminate
value &length by difference to by difference to by 0-based key leading zeroes in

predecessor reference value in dictionary binary representation

Logical Level Physical
natural numbers data bits and bytes
preprocessing role actual compression

Data Compression

Technique = abstract idea of how compression works

Run Length Encoding| | Differential Coding Frame-of-Reference Dictionary Coding Null Suppression
Replace run by Replace data elem. Replace data elem. Replace data elem. Eliminate
value &length by difference to by difference to by 0-based key leading zeroes in

predecessor reference value in dictionary binary representation

Logical Level Physical
natural numbers data bits and bytes
preprocessing role actual compression

Algorithm = concrete combination of one or more of these techniques

Two algorithms for the same technique might differin, e.g.
» their data layout
* their use of vectorization using SIMD instruction set extensions

Vectorization and Compression

— SSE (128 bit)

Literature on)

lightweight compression
mainly focuses on SSE

Vectorization and Compression

m—) m—) AVX(2) (256 bit) LM AVX-512 (512 bit) B
Literature on) / /

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE (hopefully speedup of 2 respectively 4 compared to 128-bit)

Vectorization and Compression

—) SSE (128 bit) m—) AVX(2) (256 bit) LM AVX-512 (512 bit) g

Literature on) / /

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE (hopefully speedup of 2 respectively 4 compared to 128-bit)

| How to employ recent SIMD extensions for lightw eight data compression? I

Vectorization and Compression

—) SSE (128 bit) m—) AVX(2) (256 bit) LM AVX-512 (512 bit) g

Literature on) / /

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE (hopefully speedup of 2 respectively 4 compared to 128-bit)

| How to employ recent SIMD extensions for lightw eight data compression? I

straightforward port
» = Substitute SSE instructions for their AVX(2) and »
AVX-512 counterparts

= Slightly adapt memory layout where necessary
SSE-implementation

) : . AVX-implementation
of some algorithm Easy to do (it possible) AVX-512-implementation

Evaluation - First Example

SIMD-BP128* - Basic Idea

Null Suppression Algorithm
= very efficient from a performance as wellas compression ratio perspective

Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack alldata elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.

11

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T]

4]

3] Bl [T o]

Compressed output (10 bits/int)

12

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

8]

[T [7] T[&T 5l

4]

3]

o]

Processing

Compressed output (10 bits/int)

13

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [T3] ol [E] o

. T J
Processing l_m m_load_si128()
[[T B B[]

Compressed output (10 bits/int)

14

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [T3] ol [E] o

N J\. J

AN 1

Processing _mm_load_si128() l_mm_load_si1280
Bl B B [o
[[ZT B Bl [4]

Compressed output (10 bits/int)

15

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [T3] ol [E] o

N J\. J

AN 1

Processing _mm_load_si128() l_mm_load_si1280
Bl B B [o
[[ZT B Bl [4]
{ _mm_slli_epi32()
(7] THeN [B T [af |

Compressed output (10 bits/int)

16

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [T3] ol [E] o

N J\. J

AN 1

Processing _mm_load_si128() l_mm_load_si1280
Bl B B [o
[[ZT B Bl [4]
{ _mm_slli_epi32()
(7] THeN [Bl T [af |

‘_mm_or_si128()

[[71[s] TT B[BIET [[fo]

Compressed output (10 bits/int)

17

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

Tl A B TeT [+ T&T Bl [T3] ol [E] o

N A J\. J

Processing _mm_load_si128() _mm_load_si128() l_mm_load_si1280
| [7iis| 6N 2] [SPN [4flo) [3] Bl Ta] o]
[el AT H sl [T71 Tl 5] 4]
{ _mm_slli_epi32()
[Tz] THeN [B T T |

‘_mm_or_si128()

[[71[s] TT B[BIET [[fo]

Compressed output (10 bits/int)

18

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

[TeT TS B [s] [71 o7 5] 4] [3] Il [l o]
N \(A \C N Y J
Processing _mm_load_si128() _mm_load_si128() l_m m_load_si128()

| [70fs] Fe o] S [4lfo]

[Te] TAT H sl
$ _mm_slli_epi32()
E [A] b 8] |

ol Ta]
[T Te]]

{ _mm_slli_epi32()
B |

[T7] THe |

‘_mm_or_si128()

3] o]

4]

4] |

| [71[s] BV |

4]l0]

Compressed output (10 bits/int)

19

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

STl B B [T 7] BN B [3] B OB ol
J

N A J\.

A AN 1

Processing _mm_load_si128() l_mm_load_si1280
3] Rl [E] o
[77 [ed B 4]

$ _mm_slli_epi32()

Bl A H [s]]

l_mm_or_si128()

Bll7 (s [AFeT o [

{ _mm_slli_epi32()

(717 THeN T B T 4 |

‘_mm_or_si128()

| [71[s] Fe 2] [N [4]

Compressed output (10 bits/int)

20

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

STl B B [T 7] BN B [3] B OB ol
J

N A J\.

A AN 1

Processing _mm_load_si128() l_mm_load_si1280
3] Rl [E] o
[77 [ed B 4]

$ _mm_slli_epi32()

Bl A H [s]]

l_mm_or_si128() ‘_mm_or_si128()

Bll7 (s [AFeT o [| [71[s] Fe 2] [N [4]

{ _mm_slli_epi32()

(717 THeN T B T 4 |

_mm_store_si128()

r

N
Compressed output (10 bits/int) ... [B][7][3] 28 | | [4]]

21

SIMD-BP128 — Compression

Uncompressed input (32 bits/int)

[_Tel A B TeT [+ T&T Bl [T3] ol [E] o

N A J\. J

AN 1

Trivially Portable

_mm_load_si128() _mm_load_si128() l_mm_load_silzs()

All employed SSE-intrinsics

have equivalents [3] B [o]
in AVX2 and AVX-512,eg.
_mm_load_si128() | 171 - l 4]
_mm256_load_si256() { _mm_slli_epi32() { _mm_slli_epi32()
-mm>512_load_si5120 EI . . (T2l T8l | B T Jar]

_mm_slli_epi32() l_mm_or_si128() ‘_mm_or_si128()
_mm256_slli_epi32()

P! Bl 73 [Al'6] 28 5|8 [4][0] [[7[[s] [T B[BT [lfo]
_mmb512_slli_epi32()

_mm_or_sil128() _mm_store_si128()
_mm256_or_si256()

_mm512_or_si512() r

N\
Compressed output (10 bitsfint) ... [B][7][3] | |28 [5] 18] [4][0]

22

SIMD-BP128* - Idea

block size = size of vector register in bits

- guarantees alignment of output \

v

Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack all data elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.

23

SIMD-BP128* - Idea

_—"> Ported versions need blocks of
- 256 elements (AVX2)
- 512 elements (AVX-512)

block size = size of vector register in bits
- guarantees alignment of output \

Z
Subdivide data into blocks of 128 data elements each,

- Determine bit width for largest data element per block

¥

Pack all data elements in the block using that bit width

*D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper.,45(1), 2015.

Evaluation Setup

Algorithms

= Implemented in C/C++
- Some by the originalauthors
- Some implemented by us
= Compiled using g++-7.0.1 -0O3

Synthetic Data
= Allows to vary the data properties carefully

Evaluation System

= Intel Xeon Phi7250
- 1.4 GHz
- Ll-cache:32 KB (data)
- L2-cache:1 MB

 6x32 GB DDR4 @ 2400 MHz

Measurements
= Allexperiments completely in-memory

= disk not touched during time measurements

= Compression ratio reported in bits/int
- Loweris better
- Uncompressed data has 32 bits/int

= Speeds reported in million integers per
second (mis)

- Higheris better
- Onlysingle-thread performance

25

SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers

= Unsorted
= 4-bit values vs. 28-bit outliers

= We vary the outlier ratio

26

SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers
= Unsorted
= 4-bit values vs. 28-bit outliers
= We vary the outlier ratio

Insights

= Increasing vector size
- increasing vulnerability to
outliers

few outliers

many outliers

twice as much memory
compared to 128-bit

27

SIMD-BP128 — Evaluation

Data
= 100 M 32-bit integers
= Unsorted
= 4-bit values vs. 28-bit outliers
= We vary the outlier ratio

Insights

= Increasing vector size
- increasing vulnerability to
outliers
= Suboptimalspeed ups

- Faraway from speedups of
2o0r4

few outliers

many outliers

28

Evaluation Second Example

Run-Length Encoding

Basic ldea
= View subsequent occurrences of the same uncompressed
value as a run Rle
= Each run representable by its value and length 00/98]76/54
— just two integers 0098|7654 00/98|76|54| run value
0098|7654 00 00[{00[{04 runlength
0098|7654 12/34|56|78] run value
RLE-SIMD 12[34|56]78 00/00[00[01 runlength
= Uses SIMD instructions to parallelize comparisons |[00|00|AB|CD 00/00|AB|CD| run value
= Proposed for 128-bit vectorization 00(00|AB|CD 00/00/00/03 run length
00/00|/ABICD
Porting to Larger Vector Sizes
= easily portable using a straightforward approach
........ Read this
...... way

30

Evaluation using Different Vector Sizes

Compression Speed Speedup
= Measured in million integers per second (mis) = Compared to baseline of 128-bit

non-well performing area well-performing area

31

Evaluation using Different Vector Sizes

Conflict Detection-based Run-Length Encoding —
AVX-512 CD Instruction Set in Action e of 128-bit

Annett Ungethiim, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

Database Systems Group, Technische Universitéit Dresden

Dresden, Germany
{firstname.lastname}@tu-dresden.de

non-wellperforming area well-performing area

32

Conclusion

—) —) AVX(2) (256 bit) —) w m—)
Literature on

lightweight compression Increasing vector sizes promise performance improvements
mainly focuses on SSE

Advantage Disadvantages
Desired speedups usually not achieved

- Straightforward porting usually feasible . Negative effect on compression ratio

Straightforward Port

L5 » o
SSE-implementation AVX-implementation
of some algorithm NOT THERIGHT WAY AVX-512-implementation

33

	Make Larger Vector Register Sizes New Challenges?
	Vectorization using SIMD
	Trend of Increasing Vector Register Sizes
	Data Compression
	Data Compression
	Vectorization and Compression
	Vectorization and Compression
	Vectorization and Compression
	Vectorization and Compression
	Evaluation - First Example
	SIMD-BP128* – Basic Idea
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128 – Compression
	SIMD-BP128* – Idea
	SIMD-BP128* – Idea
	Evaluation Setup
	SIMD-BP128 – Evaluation
	SIMD-BP128 – Evaluation
	SIMD-BP128 – Evaluation
	Evaluation Second Example
	Run-Length Encoding
	Evaluation using Different Vector Sizes
	Evaluation using Different Vector Sizes
	Conclusion

