Generating Evolving Property Graphs with Attribute-Aware Preferential Attachment

Amir Aghasadeghi (aa3657@Drexel.edu)

Julia Stoyanovich (stoyanovich@drexel.edu)

College of Computing & Informatics

Drexel University, Philadelphia, PA

DBTest June 15th, 2018

Goals

In this work

- We make progress towards a data generator for evolving property graphs
- Such graphs represent evolution of
 - Graph topology
 - Vertex and edge attributes

Ultimate goal

 Create a standardized benchmark with predefined queries to measure performance of evolving graph databases

Outline

Introduction Random Walk Attribute-Based Graph and Recursive Preferential Generation Search Attachment

Introduction

Graphs

Graphs are used to represent a plethora of phenomena

Evolving Graphs

• These phenomena can change over time

time

Property Graphs

- Need scalable and generalizable systems for evolving graphs
- We built such a system: Portal
- Standardized datasets necessary to measure performance
 - Hard to obtain real evolving graph datasets
 - Need to control graph characteristics

We need a model to generate realistic syntactic evolving graphs

Previous Works

Evolution of graph topology over time

- Random Walk
- Forest Fire
- Solely focus on structural evolution
- No attributes

LDBC Social Network Benchmark

- A realistic synthetic social network
- Has attributes
- Doesn't use a principled evolution model

Attributes ...

Attributes matter

Random Walk and Recursive Search

Random Walk (RW)

Node Creation (Adding Step)

Edge Creation (Walking Step)

Recursive Search(RS)

Closing Triangles

Basic block of the RW and RS can be looked as closing possible triangles

Attribute-Based Preferential Attachment (ABA)

Node Creation

- RW and RS: Only one new vertex will be added to the graph at each iteration
- ABA: Add multiple new vertices at each iteration (batch mode)

Edge Creation

RW and RS: Each vertex creates all of its edges in one single iteration

ABA: Try to close all open triangles in each iteration

Edge Creation Probability

RW and **RS**: New edges created with a fixed probability q

ABA: Probabilities depends on pairwise node similarity

Implementation

Graph Generation

Generation Process

Node Addition

Edge Creation

Generation Process

Node Addition

Edge Creation

Case Study: DBLP collaboration graph

- Extracted a growth-only evolving graph
 - vertices represent authors
 - evolving vertex **attribute**: venues where the author has published papers
 - edges represent co-authorship

VID	Name	Start Date	End Date	Venues
618971	Julia Stoyanovich	2005	2006	{VLDB}
618971	Julia Stoyanovich	2006	2007	{VLDB}
618971	Julia Stoyanovich	2007	2008	{VLDB, WebDB }
				{VLDB, WebDB , SIGMOD,
618971	Julia Stoyanovich	2008	2009	Bioinformatics}
•••				

Triangle-closing probabilities in DBLP

Models

 Generated using probabilities: attribute-based and structure-only

Querying the graphs

- Used Portal to run two different queries on our generated models
 - Average Vertex Degree
 - Clustering Coefficient

Conclusion and Future work

- In this paper we presented a data generator for evolving property graphs
- Previous models do not use attributes in their generation process
- We showed that attributes play important rule in edge creation probability
- In future works:
 - automatic methods for attaching new nodes to the graph
 - modeling attribute value evolution
 - defining a workload of evolving graph query and analysis primitives.

Thank You

https://portaldb.github.io

CAREER: Querying Evolving Graphs