
Fair Benchmarking Considered Difficult:  
Common Pitfalls In Database

Performance Testing

Mark Raasveldt, Pedro Holanda, Tim Gubner &
Hannes Mühleisen

• Many problems in Data Management Benchmarking

• Industry 2018: White papers online, misleading 
(“Trust us, our product is perfect in every way”)

• Academia 2018: Unreproducible numbers in papers
(“Trust me, my proposal is the best”)

• Paradox:  
Lots of results published, few are useful

• Why?

State of Things

3

Fast

Slow

Our System Their System

Sp
ee

d

Paper without this plot will not get accepted
Product without this plot will not get traction/sold

Motivating Example
• TPC-H Q1 benchmark in top conference paper

• Compared prototype against real DBMS (Hyper)

• Hardcoded group counts + Hardcoded hash

• Too small data types (float to hold aggregations)

• Overflows not handled

• Surprise: They were faster

• … but incorrect results (and crashes if the dataset changes)

• Doesn’t matter if you only look at the timings!

1.Non-Reproducibility

2.Failure to Optimise

3.Apples vs Oranges

4.Incorrect Results

5.Cold vs. Hot/Warm Runs

6.Data Preprocessing

7.Overly-Specific Tuning

DB Benchmarks:  
Common Pitfalls

• The example we gave was bad.

• But we could at least spot the crimes!

• Could be worse:

• Just nothing available. This is the normal case.

• Very little consequences (paper acceptance)

• Noble Effort: SIGMOD Reproducibility

• Fix: Script that produces plots in paper from scratch.  
Source code etc. available.

Non-Reproducibility

7

12.18

9.73 9.73
8.19 8.19

4.7

MariaDB Postgres Postgres SQLite SQLite MariaDB*
0

5

10

M
ed

ia
n

tim
e

(s
)

Same query & data (TPCH SF1 Q1)

What’s the crime?

• …same configuration parameters

• …same compilation flags

• …same version number of the database

• …different schema!

• DOUBLE instead of DECIMAL

• Still gives correct results according to TPC-H
specification

Same query & data (TPCH SF1 Q1)

• Low incentive to optimise competition

• Compiler (-O1 vs -O3, version, …)

• Configuration

• e.g. pg_shared_buffers=10GB,
pg_effective_cache_size=6GB

• Fix: Involve competition!  
Have them configure their system.

• Lots of work though, but more common.

Failure to Optimize

10

Same query, data & schema (TPCH SF1 Q1)

Compilation Flags

0.47

0.27

0.0

0.2

0.4

0.6

Postgres Postgres*

M
ed

ia
n

tim
e

(s
)

1.58

0.87

0.0

0.5

1.0

1.5

MonetDB MonetDB*
M

ed
ia

n
tim

e
(s

)

Config

• Standalone vs. Full System

• Feature mismatch

• Overflow checking on/off

• Transactions on/off

• Fix: Hard. Integrate algorithms into full system.

Apples vs. Oranges

12

Same query & data (TPCH SF1 Q1)

0.87

0.03
0.00

0.25

0.50

0.75

1.00

MonetDB 'TimDB'

M
ed

ia
n

tim
e

(s
)

TimDB is hand-rolled standalone C program for Q1
TimDB is not a database. Common misrepresentation.

• Bugs sometimes make code very fast.

• But incorrect, may be invisible in benchmark

• Always check results

• Run with different benchmark and dataset, too

• E.g. run with PostgreSQL and compare results

Incorrect Results

void tpchq1() {
return;

} Even TimDB can’t beat!

• Beware of these
pitfalls when writing/
reviewing

• We are by no means
immune ourselves

Summary

